跳转至

使用 Sklearn

实现聚集聚类

原文:https://www.geeksforgeeks.org/impering-aggregate-clustering-using-sklearn/

先决条件: 凝聚聚类 凝聚聚类是最常见的层次聚类技术之一。 数据集–信用卡数据集

假设:聚类技术假设每个数据点与其他数据点足够相似,可以假设起始处的数据被聚类在 1 个聚类中。

步骤 1:导入所需的库

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn.decomposition import PCA
from sklearn.cluster import AgglomerativeClustering
from sklearn.preprocessing import StandardScaler, normalize
from sklearn.metrics import silhouette_score
import scipy.cluster.hierarchy as shc

第二步:加载和清理数据

# Changing the working location to the location of the file
cd C:\Users\Dev\Desktop\Kaggle\Credit_Card

X = pd.read_csv('CC_GENERAL.csv')

# Dropping the CUST_ID column from the data
X = X.drop('CUST_ID', axis = 1)

# Handling the missing values
X.fillna(method ='ffill', inplace = True)

第三步:数据预处理

# Scaling the data so that all the features become comparable
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)

# Normalizing the data so that the data approximately 
# follows a Gaussian distribution
X_normalized = normalize(X_scaled)

# Converting the numpy array into a pandas DataFrame
X_normalized = pd.DataFrame(X_normalized)

第四步:降低数据的维度

pca = PCA(n_components = 2)
X_principal = pca.fit_transform(X_normalized)
X_principal = pd.DataFrame(X_principal)
X_principal.columns = ['P1', 'P2']

树突图用于将给定的簇划分为许多不同的簇。

第五步:可视化树突的工作

plt.figure(figsize =(8, 8))
plt.title('Visualising the data')
Dendrogram = shc.dendrogram((shc.linkage(X_principal, method ='ward')))

要通过可视化数据来确定最佳聚类数,请将所有水平线想象为完全水平,然后在计算任意两条水平线之间的最大距离后,在计算的最大距离中绘制一条水平线。

上图显示,对于给定的数据,最佳聚类数应为 2。

第六步:为不同的 k 值建立和可视化不同的聚类模型

a) k = 2

ac2 = AgglomerativeClustering(n_clusters = 2)

# Visualizing the clustering
plt.figure(figsize =(6, 6))
plt.scatter(X_principal['P1'], X_principal['P2'], 
           c = ac2.fit_predict(X_principal), cmap ='rainbow')
plt.show()

b) k = 3

ac3 = AgglomerativeClustering(n_clusters = 3)

plt.figure(figsize =(6, 6))
plt.scatter(X_principal['P1'], X_principal['P2'],
           c = ac3.fit_predict(X_principal), cmap ='rainbow')
plt.show()

c) k = 4

ac4 = AgglomerativeClustering(n_clusters = 4)

plt.figure(figsize =(6, 6))
plt.scatter(X_principal['P1'], X_principal['P2'],
            c = ac4.fit_predict(X_principal), cmap ='rainbow')
plt.show()

d) k = 5

ac5 = AgglomerativeClustering(n_clusters = 5)

plt.figure(figsize =(6, 6))
plt.scatter(X_principal['P1'], X_principal['P2'],
            c = ac5.fit_predict(X_principal), cmap ='rainbow')
plt.show()

e) k = 6

ac6 = AgglomerativeClustering(n_clusters = 6)

plt.figure(figsize =(6, 6))
plt.scatter(X_principal['P1'], X_principal['P2'],
            c = ac6.fit_predict(X_principal), cmap ='rainbow')
plt.show()

我们现在使用数学技术来确定最佳的集群数量。在这里,我们将使用轮廓分数作为目的。

步骤 7:评估不同的模型并可视化结果。

k = [2, 3, 4, 5, 6]

# Appending the silhouette scores of the different models to the list
silhouette_scores = []
silhouette_scores.append(
        silhouette_score(X_principal, ac2.fit_predict(X_principal)))
silhouette_scores.append(
        silhouette_score(X_principal, ac3.fit_predict(X_principal)))
silhouette_scores.append(
        silhouette_score(X_principal, ac4.fit_predict(X_principal)))
silhouette_scores.append(
        silhouette_score(X_principal, ac5.fit_predict(X_principal)))
silhouette_scores.append(
        silhouette_score(X_principal, ac6.fit_predict(X_principal)))

# Plotting a bar graph to compare the results
plt.bar(k, silhouette_scores)
plt.xlabel('Number of clusters', fontsize = 20)
plt.ylabel('S(i)', fontsize = 20)
plt.show()

因此,借助于轮廓分数,可以得出结论,对于给定的数据和聚类技术,最佳聚类数是 2。



回到顶部