跳转至

ML |多标签排名指标–覆盖率错误

原文:https://www.geesforgeks.org/ml-multi label-ranking-metrics-coverage-error/

覆盖误差告诉我们有多少得分最高的最终预测标签,我们必须包括在内,而不会遗漏任何基本事实标签。如果我们想知道预测所需的最高得分预测的平均数量,以便不遗漏任何基础事实标签,这是有用的。 给定一个基本事实标签的二进制指示矩阵y\epsilon \left { 0, 1 \right }^{n_{samples} * n_{labels}}。与每个标签相关的分数由\hat{f}表示,其中,

 \hat{f}\epsilon \left { \mathbb{R} \right }^{n_{samples} * n_{labels}}

The coverage error is defined as:

 coverage\left ( y, \hat{f} \right ) = \dfrac{1}{n_{samples}} * \sum_{i=0}^{n_{samples}-1}max_{j: y_{ij}=1} rank_{ij}

where rank is defined as

 rank_{ij} = \left | \left {  k \colon \hat{f_{ik}}\geq\hat{f_{ij}} \right }\right |

代码:使用 scikit-learn 检查任何带有真实标签的预测分数的覆盖率误差。

# Import dataset
import numpy as np
from sklearn.metrics import coverage_error

# Create Imaginary prediction and truth dataset
y_true = np.array([[1, 0, 1], [0, 0, 1], [0, 1, 1]])
y_pred_score = np.array([[0.75, 0.5, 1], [1, 1, 1.2], [2.3, 1.2, 0.1]])
print(coverage_error(y_true, y_pred_score))

输出:

coverage error of *2.0*

让我们手动计算上述示例的覆盖误差 我们的第一个样本具有【1,0,1】的地面真值。为了涵盖这两个真正的标签,我们需要将我们的预测(这里是【0.75,0.5,1】)按照降序排列。因此,我们需要这个样本中的前 2 个预测标签。同样,对于第二个和第三个样本,我们需要 top-1 和 top-2 预测样本。对多个样本的这些结果进行平均,得到 2.0 的输出。

  Coverage Error  =\dfrac{\left ( 2+1+3 \right )}{3} = 2.0

The best value of coverage is when it is equal to average number of true class labels.



回到顶部