多标签排名指标-标签排名平均精度| ML
原文:https://www.geesforgeks.org/multi label-ranking-metrics-label-ranking-average-precision-ml/
标签排名平均精度(LRAP)衡量预测模型的平均精度,但使用精度召回。它衡量每个样本的标签排名。其值始终大于 0 。这个指标的最佳值是 1 。这个度量与平均精度有关,但是使用了标签排名而不是精度和召回 LRAP 基本上提出了一个问题,对于每个给定的样本,排名较高的标签中有多少百分比是真实标签。 给定一个基本事实标签的二进制指示矩阵

The score associated with each label is denoted by where,

Then we can calculate LRAP using following formula:

where,

and

Code : Python code to implement LRAP
# import numpy and scikit-learn libraries
import numpy as np
from sklearn.metrics import label_ranking_average_precision_score
# take sample datasets
y_true = np.array([[1, 0, 0],
[1, 0, 1],
[1, 1, 0]])
y_score = np.array([[0.75, 0.5, 1],
[1, 0.2, 0.1],
[0.9, 0.7, 0.6]])
# print the output
print(label_ranking_average_precision_score(
y_true, y_score))
输出:
0.777
为了理解上面的例子,我们来看三类人(以【1,0,0】为代表),猫(以【0,1,0】为代表),狗(以【0,0,1】为代表)。我们收到了三个样品,如【1,0,0】、【1,0,1】、【1,1,0】。这意味着我们总共有 5 个地面真实标签(人类 3 个,猫 1 个,狗 1 个)。例如,在第一个样本中,只有真正的标签人类在预测标签中获得了 2 和的位置。所以,秩= 2。接下来我们需要找出一路上有多少正确的标签。只有一个正确的人类标签,因此分子值为 1。因此分数变为 1/2 = 0.5。 因此,第一个样品的 LRAP 值为:

In the second sample, the first rank prediction is of human, followed by cat and dog. The fraction for the human is 1/1 = 1 and the dog is 2/3 = 0.66 (number of true label ranking along the way/ranking of dog class in the predicted label). LRAP value of 2nd sample is:

Similarly, for the third sample, the value of fractions for the human class is 1/1 = 1 and the cat class is 2/2 = 1. LRAP value of 3rd sample is:

Therefore total LRAP is the sum of LRAP’s on each sample divided by the number of samples.
